

Section 1.5 - Equations

- Linear equation المعادلة الخطية is an equation in the form

$$ax + b = 0$$

where a and b are real numbers and x is the variable.

لاحظ

Linear equations

$$4x - 5 = 3$$
$$2x = \frac{1}{2}x - 7$$

$$x - 6 = \frac{x}{3}$$

Nonlinear equations

$$x^{2} + 2x = 8$$

$$\sqrt{x} - 6x = 0$$

$$\frac{3}{x}$$
 – $2x = 1$

Example 1

Solve the equation 7x - 4 = 3x + 8

$$4x = 12$$

$$x = \frac{12}{4}$$

The surface area A of a closed rectangular box can be calculated from its length l, width w, and height h according to the formula

$$A = 2lw + 2wh + 2lh$$

Solve for w in terms of the other variables in this equation.

Solution

$$A - 2lh = 2lv + 2wh$$

$$A - 2lh = w(2l - 2h)$$

$$\frac{A - 2lh}{2l - 2h} = w$$

are second-degree equations of the form المعادلات التربيعية

$$ax^2 + bx + c = 0$$

where a, b, and c are real numbers and $x \neq 0$

Example 3

Find all real solutions of the equation $x^2 + 5x = 24$

$$x^{2} + 5x - 24 = 0$$
 $(x + 8)(x - 3) = 0$
 $x + 8 = 0$ or $x - 3 = 0$
 $x = 3$

Find all real solutions of each equation.

(a)
$$x^2 = 5$$

(b)
$$(x-4)^2 = 5$$

Solution

(a)
$$\chi^2 = 5$$

 $\chi = \pm \sqrt{5}$

(b)
$$(x-4)^2 = 5$$

 $x-4 = \pm \sqrt{5}$
 $x = 4 + \sqrt{5}$ $x = 4 - \sqrt{5}$

- To make
$$x^2+bx$$
 a perfect square مربع کامل (completing the square), add $\left(\frac{b}{2}\right)^2$

$$x^{2} + bx + \left(\frac{b}{2}\right)^{2} = \left(x + \frac{b}{2}\right)^{2}$$

Example 5

Find all real solutions of the equation $x^2 - 8x + 13 = 0$

$$x^{2} - 8x + \left(-\frac{8}{2}\right)^{2} = -13 + \left(-\frac{8}{2}\right)^{2}$$

$$x^{2} - 8x + 16 = -13 + 16$$

$$(x - 4)^{2} = 3$$

$$x - 4 = 5\sqrt{3}$$

$$x = 4 + \sqrt{3}$$

$$x = 4 - \sqrt{3}$$

of any quadratic الجذور (حلول) can be used to find the roots القانون العام of any quadratic equation

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

discriminant يسمى المميز $b^2 - 4ac$

If D > 0, then the equation has **two** distinct real solutions.

If D = 0, then the equation has exactly one real solution.

If D < 0, then the equation has no real solution.

Example 6

Find all real solutions of each equation.

(a)
$$3x^2 - 5x - 1 = 0$$

(b)
$$4x^2 + 12x + 9 = 0$$

(c)
$$x^2 + 2x + 2 = 0$$

$$x = -b + \sqrt{b^2 - 4ac}$$

(c)
$$x = -2 \pm \sqrt{2^2 - 4.1.2}$$

$$= -2 \pm \sqrt{-4}$$
 < 0

Solve the equation $\frac{3}{x} - \frac{2}{x-3} = \frac{-12}{x^2-9}$

$$\frac{3(x-3)-2x}{x(x-3)} = \frac{-12}{(x-3)(x+3)}$$

$$(3x-9-2x)(x+3) = -12x$$

$$(x-9)(x+3) = -12x$$

$$x^{2}-9x+3x-2x = -12x$$

$$x^{2}-6x-2x+12x = 0$$

$$x^{2}+6x-2x = 0$$

$$(x+9)(x-3) = 0$$

$$x=-9$$

$$x=-9$$

$$x=-9$$

$$x=-9$$

$$x=-1$$

Solve the equation $2x = 1 - \sqrt{2 - x}$

Foliation

$$2 \times -1 = -\sqrt{2-x}$$

$$(2 \times -1)^{2} = 2 - x$$

$$4 \times^{2} - 4 \times +1 = 2 - x$$

$$4 \times^{2} - 4 \times +1 - 2 + x = 0$$

$$4 \times^{2} - 3 \times -1 = 0$$

$$(4 \times +1)(x - 1) = 0$$

$$4 \times +1 = 0 \qquad x - 1 = 0$$

$$x = -\frac{1}{4}$$

$$x = -\frac{3}{4}$$

$$x = -\frac{1}{4}$$

$$x = -\frac{3}{4}$$

$$x = -\frac{1}{4}$$

Find all solutions of the equation $x^4 - 8x^2 + 8 = 0$

Solution
$$(x^{2})^{2} - 8x^{2} + 8 = 0$$

$$x^{2} = -6 \pm \sqrt{62 - 4ac}$$

$$= -(-8) \pm \sqrt{(-8)^{2} - 4ac}$$

Find all solutions of the equation $x^{1/3} + x^{1/6} - 2 = 0$

Solution

$$(x''6)^{2} + x'6 - 2 = 0$$

 $(x''6)^{2} + x'6 - 2 = 0$
 $(x''6)^{2} + x'6 - 2 = 0$

Example 11

Solve the equation |2x - 5| = 3

$$2x-5=3$$
 $2x=3+5$
 $x=\frac{8}{2}=4$

$$2x-5=-3$$
 $2x=-3+5$
 $x=\frac{2}{2}=1$

Problems

- Solve the linear equation -x + 3 = 4x.

$$-x - 4x = -3$$

$$-5x = -3$$

$$x = \frac{-3}{-5} = \frac{3}{5}$$

- Solve the equation for the variable R; PV = nRT.

- Find all real solutions of the equations by factoring.

(a)
$$x^2 + x - 12 = 0$$

$$(x+4)(x-3) = 0$$

$$x = -4$$

(b)
$$2x^2 = 8$$

$$2^{2} = \frac{8}{2} = 4$$

(c)
$$(2x-5)^2 = 81$$

$$2x = 9+5 = 14$$

x = -1 - 16

2 = -1+16

- Find all real solutions of the equation by completing the square.

(a)
$$x^2 + 2x - 5 = 0$$

$$x^2 + 2x + \left(\frac{2}{2}\right)^2 = 5 + \left(\frac{2}{2}\right)^2$$

$$x^2 + 2x + 1 = 5 + 1$$

$$(x + 1) = 6$$

$$x + 1 = \pm \sqrt{6}$$

(b)
$$2x^{2} + 8x + 1 = 0$$

 $2x^{2} + 8x = -1$
 $2(x^{2} + 4x) = -1$
 $x^{2} + 4x = -\frac{1}{2}$
 $2x^{2} + 4x + (\frac{4}{2})^{2} = -\frac{1}{2} + (\frac{4}{2})^{2}$
 $2x^{2} + 4x + 4 = -\frac{1}{2} + 4$
 $2x^{2} + 4x + 4 = -\frac{1}{2} + 4$
 $2x^{2} + 4x + 4 = -\frac{1}{2} + 4$
 $2x^{2} + 4x + 4 = -\frac{1}{2} + 4$
 $2x^{2} + 4x + 4 = -\frac{1}{2} + 4$
 $2x^{2} + 4x + 4 = -\frac{1}{2} + 4$
 $2x^{2} + 4x + 4 = -\frac{1}{2} + 4$
 $2x^{2} + 4x + 4 = -\frac{1}{2} + 4$
 $2x^{2} + 4x + 4 = -\frac{1}{2} + 4$
 $2x^{2} + 4x + 4 = -\frac{1}{2} + 4$
 $2x^{2} + 4x + 4 = -\frac{1}{2} + 4$
 $2x^{2} + 4x + 4 = -\frac{1}{2} + 4$
 $2x^{2} + 4x + 4 = -\frac{1}{2} + 4$
 $2x^{2} + 4x + 4 = -\frac{1}{2} + 4$
 $2x^{2} + 4x + 4 = -\frac{1}{2} + 4$
 $2x^{2} + 4x + 4 = -\frac{1}{2} + 4$
 $2x^{2} + 4x + 4 = -\frac{1}{2} + 4$
 $2x^{2} + 4x + 4 = -\frac{1}{2} + 4$
 $2x^{2} + 4x + 4 = -\frac{1}{2} + 4$
 $2x^{2} + 4x + 4 = -\frac{1}{2} + 4$

- Find all real solutions of the quadratic equation.

(a)
$$x^2 - 13x + 42 = 0$$

$$(x-7)(x-6)=0$$

(b)
$$9x^2 + 12x + 4 = 0$$

$$x = \frac{-2}{3}$$

Perfect square

3x2+3x.2+22

- Find all real solutions of the equation.

$$\frac{1(x+2)+1(x-1)}{(x-1)(x+2)} = \frac{5}{4}$$

$$\frac{1(x+2)+1(x-1)}{(x-1)(x+2)} = \frac{5}{4}$$

$$\frac{4(x+2+x-1)}{(x-1)(x+2)} = \frac{5}{4}$$

$$\frac{4(2x+1)}{(2x+1)} = \frac{5}{2}(x-1)(x+2)$$

$$\frac{8x+4}{5x^2+5x-10}$$

$$0 = \frac{5x^2}{5x^2+5x-8x-10} - \frac{4}{5x^2-3x-10}$$

$$\frac{5x^2-3x-14=0}{5x^2+5x-8x-10-4}$$

$$\frac{5x^2-3x-14=0}{5x^2+5x-8x-10-4}$$

$$\frac{5x^2-3x-14=0}{5x^2+5x-8x-10-4}$$

$$\frac{5x^2-3x-14=0}{5x^2+5x-8x-10-4}$$

$$\frac{5x^2-3x-14=0}{5x^2+5x-8x-10-4}$$

$$\frac{5x^2-3x-14=0}{5x^2+5x-8x-10-4}$$

$$\frac{5x^2-3x-14=0}{5x^2+5x-8x-10-4}$$

$$\frac{5x+7=0}{5x-1} = \frac{1}{5x-1}$$

$$\frac{1}{-\frac{1}{5}-\frac{1}{5}} + \frac{1}{-\frac{1}{5}+\frac{1}{5}}$$

$$\frac{1}{-\frac{1}{5}-\frac{1}{5}} + \frac{1}{-\frac{1}{5}-\frac{1}{5}}$$

$$\frac{1}{-\frac{1}{5}-\frac{1}{5}-\frac{1}{5}}$$

$$\frac{1}{-\frac{1}{5}-\frac{1}{5}-\frac{1}{5}-\frac{1}{5}-\frac{1}{5}-\frac{1}{5}$$

$$\frac{1}{-\frac{1}{5}-\frac$$

= RHS

= - Z is a solution

Azha.education J N S

(b)
$$\sqrt{2x+1} + 1 = x$$

$$\sqrt{2x+1} = x - 1$$

$$2x+1 = (x-1)^{2}$$

$$2x+1 = x^{2} - 2x + 1$$

$$0 = x^{2} - 2x - 2x + 1 - 1$$

$$x^{2} - 4x = 0$$

$$x(x-4) = 0$$

$$x = 0$$

$$x = 4$$

$$LHS = \sqrt{2(a)+1}+1$$

$$= \sqrt{1}+1=2$$

$$RHS = 0 \neq RHS$$

$$LHS = \sqrt{2(4)+1} + 1$$

$$= \sqrt{8+1} + 1$$

$$= \sqrt{9+1} = 4$$

$$RHS = 4$$

$$LHS = RHS$$
or $x = 4$ is a solution

(c)
$$x^4 - 13x^2 + 40 = 0$$

$$(x^2)^2 - 13x^2 + 40 = 0$$

$$W^2 - 13W + 40 = 0$$

$$(W-8)(W-5)=0$$

$$x=8$$

$$W = 5$$

(d)
$$x^{4/3} - 5x^{2/3} + 6 = 0$$

$$(x^{2/3})^2 - 5x^{2/3} + 6 = 0$$

$$x^{2/3} = W$$

$$W^{2} - 5W + 6 = 0$$

$$(W-3)(W-2)=0$$

$$x = 3^{3/2}$$

$$\chi = \sqrt{27}$$

$$x = \sqrt{3}$$

By checking both values (x=127)

(e)
$$|3x + 5| = 1$$

$$3x = 1-5$$

$$x = \frac{-4}{3}$$

$$x = \frac{-6}{3}$$

