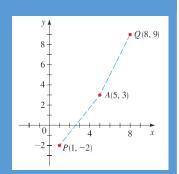

Section 1.9 - The coordinate plane; Graphs of equations; Circles

- The coordinate plane المستوى الإحداثي.


- The distance formula المسافة بين نقطتين

$$d(A,B) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

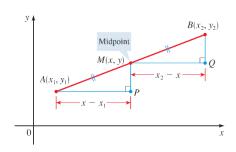
Example 1

Which of the points P(1,-2) or Q(8,9) is closer to the point A(5,3)?

Solution

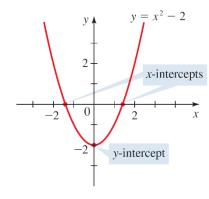
$$J(P,A) = \int (5-1)^{2} + (3-(-2))^{2} = \int 4^{2} + 5^{2} = \int 4^{2}$$

$$J(P,A) = \int (5-8)^{2} + (3-9)^{2} = \int (-3)^{2} + (-6)^{2} = \int 4^{9}$$
Point P:s closer



منتصف المسافة بين نقطتين Midpoint formula -

$$\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$


Example 2

Find the midpoint coordinates for the line segment from P(1,2) to Q(5,9).

Solution

$$M = \left(\frac{1+5}{2}, \frac{2+9}{2}\right)$$

$$= \left(3, \frac{11}{2}\right)$$

عند رسم معادلة من متغيرين (x,y) قد تتقاطع الرسمة مع y محور x أو محور

(x نقاط التقاطع مع x-intercept لإيجاد

x نضع y = 0 ونوجد قيمة

yنقاط التقاطع مع y:(yنقاط التقاطع بيجاد

y نضع x = 0 ونوجد قيمة

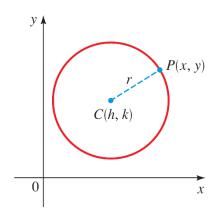
Example 3

Find the x- and y-intercepts of the graph of the equation $y = x^2 - 2$.

Solution

$$x - intercept$$

 $0 = x^2 - 2$
 $2 = x^2$
 $x = \pm \sqrt{2}$



- An equation of a circle دائرة with center مركز (h, k) and radius نصف قطرr is

$$(x-h)^2 + (y-k)^2 = r^2$$

Example 4

Find an equation of the circle with radius 3 and center (2, -5).

Solution
$$(x-2) + (y+5) = 9$$

Example 5

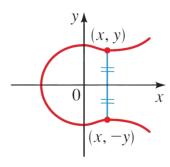
Find an equation of the circle that has the points P(1,8) and Q(5,-6) as the endpoints of a diameter.

$$M = \left(\frac{1+5}{2}, \frac{8-6}{2}\right) = \left(3, 1\right)$$

$$r = \lambda \left(M, P\right) = \int (3-1)^{2} + \left(1-8\right)^{2}$$

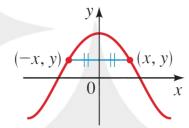
$$= \int 2^{2} + (-3)^{2} = \int 53$$

$$\left(x-3\right)^{2} + \left(3-1\right)^{2} = 53$$



Example 6

Show that the equation $x^2 + y^2 + 2x - 6y + 7 = 0$ represents a circle, and find the center and radius of the circle.

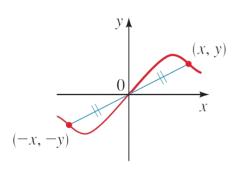

Solution $x^2 + 2x + y^2 - 6y = -7$ x+2x+(=)+y-6y+(=)=-++(=)+(=)+(=) $x^{2}+2x+1+y^{2}-6y+9=3$ $(z+1)^2 + (y-3)^2 = 3$ $r=\sqrt{3}$ Center (-1,3)

- Types of symmetry التماثل
- 1. With respect to *x*-axis:

عند وضع y بدل y في المعادلة نحصل على نفس المعادلة الأصلية

2. With respect to *y*-axis:

عند وضع x بدل x في المعادلة نحصل على نفس المعادلة الأصلية



3. With respect to the origin:

عند وضع x بدل x و y بدل y في المعادلة نحصل على نفس المعادلة الأصلية

Example 7

Test the equation for symmetry.

(a)
$$x = y^2$$

(b)
$$y = x^3 - 9x$$

Solution

$$2 = (-y)^2$$

$$x = y^2$$

$$3 - 2 = (-1)^{2}$$
 $- 2 = (-1)^{2}$

Not symmetric 15

(3)
$$-y = -x^{3} + 9x$$

 $fy = f(x^{3} - 9x)$
 $y = x^{3} - 9x$

symmetric origin

Problems

- Which of the points A(6,7) or B(-5,8) is closer to the origin?

- Which of the points $\mathcal{C}(-6,3)$ or $\mathcal{D}(3,0)$ is closer to the point $\mathcal{E}(-2,1)$?

- If M(6,8) is the midpoint of the line segment AB and if A has coordinates (2,3), find the coordinates of B.

- Find the x- and y-intercepts of the graph of the equation.

(a)
$$y = x + 6$$

(b)
$$y = x^2 - 5$$

- Find the center and radius of the circle.

(a)
$$x^2 + y^2 = 9$$

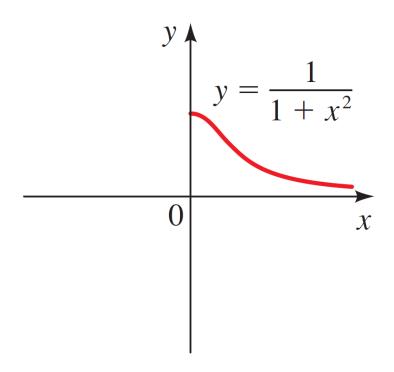
(b)
$$x^2 + (y-4)^2 = 1$$

- Find an equation of the circle that satisfies the given conditions.
- (a) Center (2,-1); radius 3

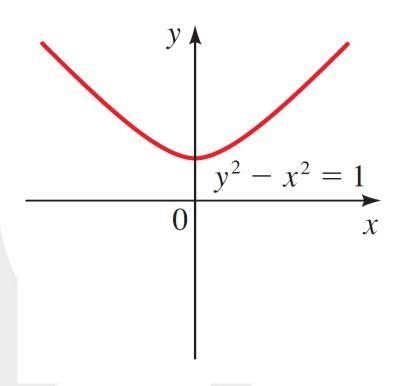
(b) Endpoints of a diameter are P(-1,1) and Q(5,9)

- Show that the equation $x^2 + y^2 + 4x - 6y + 12 = 0$ represents a circle, and find the center and radius of the circle.

- Test the equation for symmetry.


(a)
$$y = x^4 + x^2$$

(b)
$$x^2y^2 + xy = 1$$



- Complete the graph using the given symmetry property:
- (a) Symmetric with respect to the y-axis

(b) Symmetric with respect to the x-axis

